Friday, August 9, 2013

Stock Market Seasonality: A Study of the Indian Stock Market

Seasonal variations in production and sales are a well known fact in business. Seasonality refers to regular and repetitive fluctuation in a time series which occurs periodically over a span of less than a year. The main cause of seasonal variations in time series data is the change in climate. For example, sales of woolen clothes generally increase in winter season. Besides this, customs and tradition also affect economic variables for instance sales of gold increase during marriage seasons. Similarly, stock returns exhibits systematic patterns at certain times of the day, week or month. The most common of these are monthly patterns; certain months provide better returns as compared to others i.e. the month of the year effect. Similarly, some days of the week provides lower returns as compared to other trading days i.e. days of the week effect. The existence of seasonality in stock returns however violates an important hypothesis in finance that is efficient market hypothesis. The efficient market hypothesis is a central paradigm in finance. The EMH relates to how quickly and accurately the market reacts to new information. 

New data are constantly entering the market place via economic reports, company announcements, political statements, or public surveys. If the market is informationally efficient then security prices adjust rapidly and accurately to new information. According to this hypothesis, security prices reflect fully all the information that is available in the market. Since all the information is already incorporated in prices, a trader is not able to make any excess returns. Thus, EMH proposes that it is not possible to outperform the market through market timing or stock selection. However, in the context of financial markets and particularly in the case of equity market seasonal component have been recorded. They are called calendar anomalies (effects) in literature. 

The presence of seasonality in stock returns violates the weak form of market efficiency because equity prices are no longer random and can be predicted based on past pattern. This facilitates market participants to devise trading strategy which could fetch abnormal profits on the basis of past pattern. For instance, if there are evidences of ‘day of the week effect’, investors may devise a trading strategy of selling securities on Fridays and buying on Mondays in order to make excess profits. Aggarwal and Tandon (1994) and Mills and Coutts (1995) pointed out that mean stock returns were unusually high on Fridays and low on Mondays. One of the explanation put forward for the existence of seasonality in stock returns is the ‘tax-loss-selling hypothesis. In the USA, December is the tax month. Thus, the financial houses sell shares whose values have fallen to book losses to reduce their taxes. As of result of this selling, stock prices decline. However, as soon as the December ends, people start acquiring shares and as a result stock prices bounce back. This lead to higher returns in the beginning of the year, that is, January month. This is called ‘January effect’. In India, March is the tax month, it would be interesting to find ‘April Effect’.

Courtesy : 

No comments:

Real Time Analytics